• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • Export Citation Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Journal of Mathematical Nanoscience
Articles in Press
Current Issue
Journal Archive
Volume Volume 7 (2017)
Issue Issue 2
Issue Issue 1
Volume Volume 6 (2016)
Volume Volume 5 (2015)
Volume Volume 4 (2014)
Volume Volume 3 (2013)
Volume Volume 2 (2012)
Volume Volume 1 (2011)
Ali, H., Baig, A., Shafiq, M. (2017). On Topological Properties of Boron Triangular Sheet BTS(m,n), Borophene Chain B36(n) and Melem Chain MC(n) Nanostructures. Journal of Mathematical Nanoscience, 7(1), 39-60. doi: 10.22061/jmns.2017.705
Haidar Ali; Abdul Qudair Baig; Muhammad Kashif Shafiq. "On Topological Properties of Boron Triangular Sheet BTS(m,n), Borophene Chain B36(n) and Melem Chain MC(n) Nanostructures". Journal of Mathematical Nanoscience, 7, 1, 2017, 39-60. doi: 10.22061/jmns.2017.705
Ali, H., Baig, A., Shafiq, M. (2017). 'On Topological Properties of Boron Triangular Sheet BTS(m,n), Borophene Chain B36(n) and Melem Chain MC(n) Nanostructures', Journal of Mathematical Nanoscience, 7(1), pp. 39-60. doi: 10.22061/jmns.2017.705
Ali, H., Baig, A., Shafiq, M. On Topological Properties of Boron Triangular Sheet BTS(m,n), Borophene Chain B36(n) and Melem Chain MC(n) Nanostructures. Journal of Mathematical Nanoscience, 2017; 7(1): 39-60. doi: 10.22061/jmns.2017.705

On Topological Properties of Boron Triangular Sheet BTS(m,n), Borophene Chain B36(n) and Melem Chain MC(n) Nanostructures

Article 5, Volume 7, Issue 1, Winter and Spring 2017, Page 39-60  XML PDF (435 K)
DOI: 10.22061/jmns.2017.705
Authors
Haidar Ali 1; Abdul Qudair Baig2; Muhammad Kashif Shafiq3
1Government College University Faisalabad Pakistan
2Department of Mathematics, COMSATS Institute of Information Technology, Attock Campus, Pakistan
3Department of Mathematics,Government College University, Faisalabad, Pakistan
Receive Date: 12 January 2017,  Revise Date: 12 February 2017,  Accept Date: 12 March 2017 
Abstract
Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. In QSAR/QSPR study, physico-chemical properties and topological indices such as Randic, atom-bond connectivity ´ (ABC) and geometric-arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study and derive analytical closed results of general Randic index ´ Rα(G) with α = 1, 1 2 ,−1,−1 2 , for boron triangular sheet BTS(m,n), borophene chain of B36(n) and melem chain MC(n). We also compute the general first Zagreb, ABC, GA, ABC4 and GA5 indices of sheet and chains for the first time and give closed formulas of these degree based indices.

Graphical Abstract

On Topological Properties of Boron Triangular Sheet BTS(m,n), Borophene Chain B36(n) and Melem Chain MC(n) Nanostructures
Keywords
general Randic index; atom-bond connectivity ´ (ABC) index; geometric-arithmetic (GA) index; boron triangular; borophene; melem
Main Subjects
Nano Structures
Supplementary Files
download Haidar Ali JMNS2017 p.39-60 (2).pdf
References
[1] H. Ali, A. Q. Baig, M. K. Shafiq, On topological properties of hierarchical interconnection networks, J. Appl. Math. Comput. 55 (1-2) (2017) 313–334.

[2] M. Baca, J. Horv ˇ athov ´ a, M. Mokri ´ sov ˇ a, A. Suh ´ anyiov ´ a, On topological indices of fullerenes, Appl. ˇ Math. Comput. 251 (2015) 154–161.

[3] A. Q. Baig, M. Imran, H. Ali, Computing Omega, Sadhana and PI polynomials of benzoid carbon nanotubes, OAM-RC. 9 (2015) 248–255.

[4] A. Q. Baig, M. Imran, H. Ali, On Topological Indices of Poly Oxide, Poly Silicate, DOX and DSL Networks, Can. J. Chem. 93 (2015) 1–10.

[5] M. Deza, P. W. Fowler, A. Rassat, K. M. Rogers, Fullerenes as tiling of surfaces, J. Chem. Inf. Comput. Sci. 40 (2000) 550–558.

[6] M. V. Diudea, I. Gutman, J. Lorentz, Molecular Topology, Nova, Huntington, 2001.

[7] E. Estrada, L. Torres, L. Rodr´ıguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849–855.

[8] M. Ghorbani, M. A. Hosseinzadeh, Computing ABC4 index of nanostar dendrimers, Optoelectron. Adv. Mater. Rapid Commun. 4 (2010) 1419–1422.

[9] A. Graovac, M. Ghorbani, M. A. Hosseinzadeh, Computing fifth geometric-arithmetic index for nanostar dendrimers, J. Math. Nanosci. 1 (2011) 33–42.

[10] I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Springer-Verlag, New York, 1986.

[11] S. Hayat, M. Imran, Computation of certain topological indices of nanotubes, J. Comput. Theor. Nanosci. 12 (2015) 70–76.

[12] S. Hayat, M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput. 240 (2014) 213–228.

[13] M. Imran, A. Q. Baig, H. Ali, On topological properties of dominating David derived graphs, Can. J. Chem. 94 (2016) 137–148.

[14] M. Imran, A. Q. Baig, H. Ali, On molecular topological properties of hex-derived graphs, J. Chemometrics, 30 (2016) 121–129.

[15] M. Imran, A. Q. Baig, H. Ali, S. U. Rehman, On topological properties of poly honeycomb graphs, Period Math Hung, 73 (2016) 100–119.

[16] A. Iranmanesh, M. Zeraatkar, Computing GA index for some nanotubes, Optoelectron. Adv. Mater. Rapid Commun. 4 (2010) 1852–1855.

[17] W. Lin, J. Chen, Q. Chen, T. Gao, X. Lin, B. Cai, Fast computer search for trees with minimal ABC index based on tree degree sequences, MATCH Commun. Math. Comput. Chem. 72 (2014) 699–708.

[18] P. D. Manuel, M. I. Abd-El-Barr, I. Rajasingh, B. Rajan, An efficient representation of Benes networks and its applications, J. Discrete Algorithms, 6 (2008) 11–19.

[19] J. L. Palacios, A resistive upper bound for the ABC index, MATCH Commun. Math. Comput. Chem. 72 (2014) 709–713.

[20] M. Randic, On Characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609–6615. ´

[21] F. Simonraj, A. George, Embedding of poly honeycomb networks and the metric dimension of star of david network, GRAPH-HOC, 4 (2012) 11–28.

[22] F. Simonraj, A. George, Topological Properties of few Poly Oxide, Poly Silicate, DOX and DSL Networks, International Journal of Future Computer and Communication, 2 (2013) 90–95.

[23] D. Vukicevi ˇ c B. Furtula, Topological index based on the ratios of geometrical and arithmetical ´ means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–1376.

[24] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17–20.

Statistics
Article View: 97
PDF Download: 19
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.