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Abstract. The concept of energy of graph is defined as the sum of the absolute values of the
eigenvalues of a graph. Let λ1,λ2, . . . ,λn be eigenvalues of graph G, then the energy of G
is defined as E(G) = ∑n

n=1 |λi|. The aim of this paper is to compute the eigenvalues of two
fullerene graphs C60 and C80.
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1 Introduction

By using method of graph theory, we can construct cubic graphs whose faces are pen-
tagons and hexagons. We call these graphs as fullerene graphs. The fullerene era was
started in 1985 by Kroto and his co-athors with the discovery of a stable cluster C60 and
its interpretation as a cage structure with the familiar shape of a soccer ball, see [22]. The
well-known fullerene, the C60 molecule (see Figure 1), is a closed-cage carbon molecule with
three-coordinate carbon atoms tiling the spherical or nearly spherical surface with a trun-
cated icosahedral structure formed by 20 hexagonal and 12 pentagonal rings [23]. Let p, h,
n and m be the number of pentagons, hexagons, carbon atoms and bonds between them, in
a given fullerene F. Since each atom lies in exactly 3 faces and each edge lies in 2 faces, the
number of atoms is n = (5p + 6h)/3, the number of edges is m = (5p + 6h)/2 = 3/2n and
the number of faces is f = p + h. By the Euler’s formula, n − m + f = 2, one can deduce that
(5p + 6h)/3(5p + 6h)/2 + p + h = 2, and therefore p = 12, v = 2h + 20 and e = 3h + 30. This
implies that such molecules made up entirely of n carbon atoms having 12 pentagonal and
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Figure 1. The IPR Fullerene C60.

(n/2 − 10) hexagonal faces, where n ̸= 22 is a natural number equal or greater than 20. The
goal of this paper is to compute some new results on the eigenvalues of fullerene graphs. We
encourage the interested readers to consult paper [18] for more information on this topic, for
more details about mathematics of fullerene graphs see Ref.s [1–11] as well as [16].

2 Definitions and Preliminaries

Now we recall some algebraic definitions that will be used in this paper. Throughout this
paper, our notation is standard and mainly taken from [12–15, 17, 21]. Let G be a simple
molecular graph namely a graph without directed and multiple edges and without loops.
The vertex and edge-sets of G are represented by V(G) and E(G), respectively. The adjacency
matrix A(G) of graph G with vertex set V(G) = {v1,v2, . . . ,vn} is the n × n symmetric matrix
[aij] such that aij = 1 if vi and vj are adjacent and 0, otherwise. The characteristic polynomial
of graph G is defined as

χ(G,λ) = det(A(G)− λI).

The roots of this polynomial are eigenvalues of G and form the spectrum of graph as
follows:

spec(G) = {[λ1]
m1 , . . . , [λ1]

ms},

where mi is the multiplicity of eigenvalue λi. If G is a graph on n vertices and λ1,λ2, . . . ,λn

are the eigenvalues of its adjacency matrix, then the energy [20] of G is defined as

E(G) =
n

∑
i=1

|λi|.
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Figure 2. The IPR Fullerene C70.

In theoretical chemistry, the energy is a graph parameter stemming from the Hückel
molecular orbital approximation for the total π-electron energy. So the graph energy has
some specific chemical interests and has been extensively studied [19].

Example 2.1. Consider the fullerene C70 as depicted in Figure 2. This fullerene is one of the
most famous member of the fullerenes, since in this graph all pentagons are isolated. In other
words, this fullerene obeys in the Isolated Pentagon Rule (IPR). This class of fullerenes is the
most stable and many of mathematician work on IPR fullerenes.

The eigenvalues of this fullerenes are reporeted in Table 1. Hence, one can see that the
energy of this fullerene is

E(C70) = 109.

The aim of this paper is to propose a method for computing the energy of fullerene graphs
by means of block matrices. Notice that by a result in the seminal paper of Gutman [20], the
energy and graph energy for molecules with bipartite molecular graphs are the same, but
fullerenes are not bipartite.

3 Main Results

A bijection σ on V by with this property that e = uv is an edge if and only if σ(e) =
σ(u)σ(v) is an edge of E is called an automorphism of graph G. The set of all automorphisms
of G under the composition of mappings forms a group denoted by Aut(G).

A circulant matrix is a matrix where each row vector is rotated one element to the right
relative to the preceding row vector. In other words, a circulant matrix [23] is specified by
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one vector c which appears as the first column of C. The remaining columns of C are each
cyclic permutations of the vector c with offset equal to the column index. The last row of C is
the vector c in reverse order, and the remaining rows are each cyclic permutations of the last
row. In generally, an n × n circulant matrix C takes the following form:

C =


c0 cn−1 · · · c2 c1

c1 c0 cn−1 · · · c2
... c1 c0

. . . ...

cn−2
. . . . . . . . . cn−1

cn−1 cn−2 · · · c1 c0

 .

The eigenvectors of a circulant matrix are given by

vj = (1,ωj,ω2
j , . . . ,ωn−1

j )T, j = 0,1, . . . ,n − 1,

where, ωk = e
2kπ

n i are the n-th roots of unity and i2 = 1. The corresponding eigenvalues
are then given by

λj = c0 + cn−1ωj + · · ·+ c1ωn−1
j , j = 0, . . . ,n − 1.

Let A and B be matrices of dimensions n × m and n′ × m′, respectively. Then their tensor
product is an nn′ × mm′ matrix with block forms

A ⊗ B = [aijB].

Theorem 3.1. ([24]) Let Aij, 1 ≤ i, j ≤ l be square matrices of order n that have the complete set of
eigenvectors {V1, . . . ,Vn} with AijVk = αk

ij. Let also, Bk = [αk
ij], 1 ≤ k ≤ n be square matrices of order

l, each with a complete set of eigenvectors {Uk
1 , . . . ,Uk

l } satisfying BkUk
j = βkUk

j for 1 ≤ j ≤ l. Then
a complete set of eigenvectors {W1, . . . ,Wnl} for the square matrix

A11 A12 · · · A1l
A21 A22 · · · A21

...
... . . . ...

Al1 Al2 · · · All


is given by W(k−1)l+j = Uk

j ⊗ Vk for k = 1,2, . . . ,n and j = 1,2, . . . , l. The corresponding eigenvalues
are λ(k−1)l+j = βk

j .

We will apply this theorem to the case where all blocks in the adjacency matrix are ciculant
matrices. An l - level circulant is one whose adjacency matrix has an l × l block form A, all
Aij being circulant. For example, a 2- level circulant,

G = Cn({n1
i },{n2

i },{m12
i }),

would consist of two vertex sets S1 = {v1, . . . ,vn} and S2 = {w1, . . . ,wn} such that
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a) G induces circulants Cn({n1
i }) and Cn({n2

i }) on S1 and S2, respectively.

b) Edges between the two circulants are of the form viwk, where k = j + m12
i (mod n), for

some i.

The aim of this section is to compute some bounds for eigenvalues of fullerene graphs. It
is a well-known fact that for a regular graph of valency r, all eigenvalues such as λ belong
to interval [−r,r], see [17]. In this paper by using Theorem 3.1, we compute the energy of
fullerene C80 as depicted in Figure 1. The symmetric group of this fullerene is isomorphic
with icosahedral group Ih with the following adjacency matrix:

A(C5) I 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0
0 I 0 Kt 0 I 0 0 0 0 0 0 0 0 0 0
0 I K 0 I 0 0 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 I I 0 0 0 0 0 0 0 0
0 0 I 0 0 0 I Kt 0 0 0 0 0 0 0 0
0 0 0 0 I I 0 0 Lt 0 0 0 0 0 0 0
0 0 0 0 I K 0 0 0 Lt 0 0 0 0 0 0
0 0 0 0 0 0 L 0 0 0 I Kt 0 0 0 0
0 0 0 0 0 0 0 L 0 0 I I 0 0 0 0
0 0 0 0 0 0 0 0 I I 0 0 0 I 0 0
0 0 0 0 0 0 0 0 K I 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 0 0 I 0 K I 0
0 0 0 0 0 0 0 0 0 0 I 0 Kt 0 I 0
0 0 0 0 0 0 0 0 0 0 0 0 I I 0 I
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I A(C5)



,

where K = [[0,1,0,0,0]] and L = [[0,0,1,0,0]]. For computing the eigenvalues of C80, we use
from Theorem 3.1. First, we compute the eigenvalues of K, Kt, L and A(C5). Suppose α =
0.31 + 0.9i, α = 0.31 − 0.9i β = −0.81 + 0.59i, β = −081 − 59i, then x = 0.62, y = −1.62. On
the other hand, let

B1 =



2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2



.
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Then the eigenvalues of B1 are as reported in Table 1. Let also

m Eigen m Eigen
1 3 1 2.08
1 2.47 1 -2.69
1 -1.93 2 1
1 1.46 2 -1
1 2.82 2 .62
1 -1.2 2 -1.6

Table 1. The eigenvalues of B1.

B2 =



x 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 α 0 1 0 0 0 0 0 0 0 0 0 0
0 1 α 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 α 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 β 0 0 0 0 0 0 0
0 0 0 0 1 α 0 0 0 α 0 0 0 0 0 0
0 0 0 0 0 0 β 0 0 0 1 α 0 0 0 0
0 0 0 0 0 0 0 β 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 α 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 α 1 0
0 0 0 0 0 0 0 0 0 0 1 0 α 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 x



.

Then the eigenvalues of B2 are as reported in Table 2.

m Eigen m Eigen m Eigen
1 -2.7 1 2.47 1 1.46
1 -2.65 1 0.2739 1 0.62
1 -2.2 1 2.08 2 -1.62
1 -1.93 1 1.91
1 -0.71 1 1
1 -1 1 1.38

Table 2. The eigenvalues of B2.
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B3 =



y 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 β 0 1 0 0 0 0 0 0 0 0 0 0
0 1 β 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 β 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 α 0 0 0 0 0 0 0
0 0 0 0 1 β 0 0 0 α 0 0 0 0 0 0
0 0 0 0 0 0 α 0 0 0 1 β 0 0 0 0
0 0 0 0 0 0 0 α 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 β 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 β 1 0
0 0 0 0 0 0 0 0 0 0 1 0 β 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 y



,

then the eigenvalues of B3 are as reported in Table 3.

m Eigen m Eigen m Eigen
1 -2.7 1 2.47 1 1.46
1 -2.65 1 0.2739 1 0.62
1 -2.2 1 2.08 2 -1.62
1 -1.93 1 1.91
1 -0.71 1 1
1 -1 1 1.38

Table 3. The eigenvalues of B3.

For matrix

B4 =



y 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 β 0 1 0 0 0 0 0 0 0 0 0 0
0 1 β 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 β 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 α 0 0 0 0 0 0 0
0 0 0 0 1 β 0 0 0 α 0 0 0 0 0 0
0 0 0 0 0 0 α 0 0 0 1 β 0 0 0 0
0 0 0 0 0 0 0 α 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 β 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 β 1 0
0 0 0 0 0 0 0 0 0 0 1 0 β 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 y



,
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the eigenvalue are reported in Table 4.

m Eigen m Eigen m Eigen
1 -2.7 1 2.47 1 1.46
1 -2.65 1 0.2739 1 0.62
1 -2.2 1 2.08 2 -1.62
1 -1.93 1 1.91
1 -0.71 1 1
1 -1 1 1.38

Table 4. The eigenvalues of B4.

Finally, consider the matrix

B5 =



x 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 α 0 1 0 0 0 0 0 0 0 0 0 0
0 1 α 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 α 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 β 0 0 0 0 0 0 0
0 0 0 0 1 α 0 0 0 β 0 0 0 0 0 0
0 0 0 0 0 0 β 0 0 0 1 α 0 0 0 0
0 0 0 0 0 0 0 β 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 α 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 α 1 0
0 0 0 0 0 0 0 0 0 0 1 0 α 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 x



.

The spectrum of B5 is as follows:

Spec(B5) = {[−2.65], [2.82], [2.47], [−2.20], [−1.93], [−1.20], [−1],

[−0.71], [1.91], [0.27], [1.46], [1.37], [1], [−1.62], [0.62]2}
Hence, by using Theorem 3.1 the eigenvalues of C80 is as reported in Table 5.

This yields that the energy of this fullerene graph is

E(C80) = 125.1.

Concluding remarks: The energy of a fullerene is not the summation of the absolute values
of the eigenvalues but twice the summation of the first n/2 eigenvalues in non-increasing
order. Computing the energy of fullerene graphs is very difficult problem and there are
many papers concerning with estimating the eigenvalues of fullerene graphs. In this paper,
by using Sagan methods for determining the eigenvalues of cyclic matrix, we computed the
energy of IPR fullerene C80. The same approach we used here could be applied to other
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Figure 3. Fullerene graph C80 with symmetric group Ih.

m Eigen m Eigen m Eigen
3 -1.2 4 1.38 1 3
8 -1.62 6 1 3 2.82
5 -1.93 8 0.62 5 2.47
4 -2.2 4 0.27 3 2.08
4 -2.65 4 -0.71 4 1.91
3 -2.7 6 -1 5 1.46

Table 5. Eigenvalues of icosahedral fullerene C80.

fullerene graphs. Estimating the energy of fullerene graphs were also computed in some
earlier papers such as [12].
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[4] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs–Theory and Applications, Barth, Heidel-

berg, 1995.
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