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ABSTRACT. A topological index is a function Top from  into real numbers with this property 
that Top(G) = Top(H), if G and H are isomorphic. Nowadays, many of topological indices were 
defined for different purposes. In the present paper we present some properties of atom bond 
connectivity index. 
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1. INTRODUCTION  
A topological index is a graphic invariant used in structure-property correlations. So 
many topological indices have been introduced and many mathematician works in 
this area, see [1,2]. One of the most important topological indices is the connectivity 
index, χ introduced in 1975 by Milan Randić [3]. Recently Estrada et al. [4,5] 
introduced atom-bond connectivity (ABC) index, which it has been applied up until 
now to study the stability of alkanes and the strain energy of cyclo-alkanes. This 
index is defined as follows: 
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where ( )Gd u  stands for the degree of vertex u.  

An r-matching of G is a set of r edges of G which no two of them have common 
vertex. The maximum number of edges in a matching of a graph G is called the 
matching number of G and denoted by ( )µ G . 
 

2. Main Results and Discussion 
 
The aim of this section is to present some bounds of ABC index. The first Zagreb index 
[6] is defined as 1 

 ( ) ( ) ( )G Guv E
M G d u d v , where dG(u) denotes the degree of vertex 

u. The modified second Zagreb index *
2( )M G  is equal to the sum of the products of the 

reciprocal of the degrees of pairs of adjacent vertices of the underlying molecular 
graph G, that is 


*

2
1( ) .

( ) ( )uv E
G G

M G
d u d v

 

Theorem 1 [7]. Let G be a connected graph with n vertices, p pendent vertices, m 
edges, maximal degree ∆ and minimal non-pendent vertex degree δ1. Let M1 and 

*
2( )M G  be the first and modified second Zagreb indices of G. Then 

δ
Δ Δ

      *
1 1 2

1( ) 1 [ 2 ( 1)]( ).pABC G p M m p M  

Corollary 1 [7].With the same notation as in Theorem 1, 

  *
1 2( ) ( 2 ) ,ABC G M m M  

with equality if and only if G is regular or bipartite semiregular. 

Theorem 2 (Nordhaus–Gaddum-type) [8]. Let G be a simple connected graph of 
order n with connected complement G . Then 

 
 



3/4

3/4

2 ( 1) 1( ) ( )
( 2)

n n kABC G ABC G
k k

                                          (1) 

where k = max{∆, n - δ – 1}, and where ∆ and δ are the maximal and minimal vertex 
degrees of G. Moreover, equality in (1) holds if and only if G ≈ P4. 
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Theorem 3 [8]. Let G be a simple connected graph of order n with connected 
complement G . Then 

   
             

2
3 2 2 2( ) ( ) ( ) 1
2 2 2

nnABC G ABC G p p
n n k k

           (2) 

where p, p  and δ1, 1δ  are the number of pendent vertices and minimal non–pendent 

vertex degrees in G and G , respectively, and k = min{δ1, 1δ }. Equality holds in (2) if and 
only if G ≈ P4 or G is an r-regular graph of order 2r + 1. 

Graphene is the first two-dimensional material observed so far. It is a planar 
sheet of carbon atoms that are densely packed in a honeycomb crystal lattice. 
Graphene is the main element of some carbon allotropes including graphite, charcoal, 
carbon nanotubes, and fullerenes, see Figure 1.  

1 2 m

2

n

 

Figure 1. 2 – Dimensional graph of graphene sheet. 

In the following examples we compute these topological indices for some graphene 
sheets that will serve as basic building blocks in the considered graphene graphs. 
Denoted by G(m, n) means a graphene sheet with n rows and m columns. 

Example 1. Consider graph G(2,2) shown in Figure 2. There exist six edges with 
endpoint of degrees 2, ive edges with endpoint of degrees 3 and eight edges with 
endpoint of degrees 2, 3. This implies: 

 
14 10( (2,2))

32
ABC G  and      3

729 3645( (2,2)) 14 8 5 112 .
64 64

ABC G  
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Figure 2. A 2 - Dimensional graph of G(2, 2). 

Example 2. Suppose G(3,2) be a graphene sheet with 3 columns and 2 rows (depicted 
in Figure 3). By counting endpoint degrees one can see easily, 

     
1 2( (3,2)) 18 9 6 9 2

32
ABC G  and    3

729( (3,2)) 18 8 9 .
64

ABC G  

 

Figure 3. A 2 - Dimensional graph of G(3, 2). 

Example 3. Let G(2, 3) be a graphene sheet depicted in Figure 4. By counting it’s 
endpoint degrees, it is easy to check that 

      
1 2 17 20( (2,3)) (8 9) 10

3 32 2
ABC G  and    3

729( (3,2)) 17 8 10 .
64

ABC G  

 

Figure 4. A 2 - Dimensional graph of G(2, 3). 

Example 4. Finally for graph G(3, 3) depicted in Figure 5, it is easy to check that 
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      
1 2 21 34( (3,3)) (12 9) 17

3 32 2
ABC G  and    3

729( (3,2)) 21 8 17 .
64

ABC G  

 

Figure 5. A 2 - Dimensional graph of G(2, 3). 

Consider now the graph G of a graphene sheet shown in Figure 1. One can partition 
the edge set E(G) to three sets,   ( )E G A B C  where 

  {A uv E(G), deg(u)=deg(v)=2} , 
  {B uv E(G), deg(u)=deg(v)=3} , 
  { C uv E(G), deg(u)=2,deg(v)=3} . 
So   | | | | | | | |A B C E . It is easy to see that  

           
          

/2 (5 1) /2 ( 3) 2 |
| ( )|

/2 (5 1) /2 ( 3) 2 1 2|

n m n m n
E G

n m n m m n
, 

and     | | 4, | | 4 2 4A n C m n . Hence, |B| = |E| - |A| - |C|. This implies  

   
1 2

32
ABC G |A|+|B| + |B| . 

Replacing |A|, |B| and |C| by their values we proved the following Theorem: 

Theorem 5. Consider a graphene sheet G(m,n) depicted in Figure 1. Then, 

   

   

2 1/2 (5 1) /2 ( 3) 4 3 4 3 2 |
3 2

( ) .
2 1/2 (5 1) /2 ( 3) 2 3 1 4 3 2|
3 2

n m n m m n m n n

ABC G

n m n m m n m n n

              
 
              
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Let ( )G , ( )G  and ( )G  be independent set, chromatic number and clique number 
of G, respectively.  

Theorem 6[9].  

     

   

( ) 1,

( )  .
2

na G n G
G

n G
b G

   

 
  
 

 





 

If 2G K  then ABC(G) = 0. Hence, suppose 2G K . Since for two distinct vertices u,v, 

 ,du dv G  , then  

2 1 1( ) .
( )G G

G G
d ud v G

d ud v G
   


 

On the other hand by using Vizing’s theorem  χ' ( )G G   and so  
1 1

χ'
.

G (G )



 Since 

2G K  thus dGu+dGv ≥ 3. It follows that 

  ( ) ( )2 2
( ) '( )

( )1 .
'( ) '( )

uv E G uv E Gdu dv du dv
ABC G

G G
E G

G G

     
 



 



 

                      (1) 

It is well-known that for a non empty graph G,     ' G L G   where L(G) is dual of 

G. This implies that equation (1) can be simpli ied as  

      
 

'
m mABC G

GL G
 


                                                          (2) 

According to Theorem 6(a),  

      1.n G n G
G

    


 

Hence 
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        χ L G 1
G

m m L G .
L

   


  

It follows that  

          
G 1 χ G

m m L G G
m L L

  
 

 


  

and by using equation (2) we conclude that  

        .
G 1

m mABC G
L G m L

 
  

  

So, we proved the following theorem 

Theorem 4. Let  G  be the matching number of G, then  

 
ABC(G).

µ G
m

m 1


 
 

Further, if G has a perfect matching, then  

  2 .
2 2

mABC G
m n


 

  

According to Theorem 6(b)  

    
2

n G
G

 
  
 


  

and so 

       
2 .

χ L G
m mABC G

m L G

 
   

    
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