Dong, H., Zhou, B. (2011). Szeged index of bipartite unicyclic graphs. Journal of Mathematical Nanoscience, 1(1-2), 13-24. doi: 10.22061/jmns.2011.459

Hui Dong; Bo Zhou. "Szeged index of bipartite unicyclic graphs". Journal of Mathematical Nanoscience, 1, 1-2, 2011, 13-24. doi: 10.22061/jmns.2011.459

Dong, H., Zhou, B. (2011). 'Szeged index of bipartite unicyclic graphs', Journal of Mathematical Nanoscience, 1(1-2), pp. 13-24. doi: 10.22061/jmns.2011.459

Dong, H., Zhou, B. Szeged index of bipartite unicyclic graphs. Journal of Mathematical Nanoscience, 2011; 1(1-2): 13-24. doi: 10.22061/jmns.2011.459

^{}Department of Mathematics, South China Normal University Guangzhou 510631, P.R. China

Receive Date: 10 January 2011,
Revise Date: 10 February 2011,
Accept Date: 13 March 2011

Abstract

The Szeged index of a connected graph G is defined as the sum of products n_{1}(e|G)n_{2}(e|G) over all edges e = uv of G where n_{1}(e|G) and n_{2}(e|G) are respectively the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u In this paper, we determine the n-vertex bipartite unicyclic graphs with the first, the second, the third and the fourth smallest Szeged indices.

[1] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211-249.

[2] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N. Y. 27 (1994) 9-15.

[3] B. Zhou, X.Cai, Z. Du, On Szeged indices of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 113-132.

[4] I. Gutman, L. PopoviÄ‡, P.V. Khadikar, S. Karmarkar, S. Joshi, M. Mandloi, Relations between Wiener and Szeged indices of monocyclic molecules, MATCH Commun. Math. Comput. Chem. 35 (1997) 91-103.

[5] B. Zhou, X. Cai, On detour index, MATCH Commun. Math. Comput. Chem. 63 (2010) 199-210.